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The application of x-ray absorption spectroscopy methods to both materials and life sciences is well
appreciated. However, the power of extended x-ray absorption fine strdEXifd-S) spectroscopy

as a quantitative structural technique has largely been limited by its application to the
microscopicallyhomogeneousystems, in which the local environment around each absorbing atom

in the sample is the same. The growing interest in time-resolved EXAFS studies of systems in
physics, chemistry, biology, and materials science has reintroduced the requirement for an analytical
tool to probeheterogeneousmiixturesin situ. While long being recognized as a premiere technique

for this role, EXAFS studies of mixtures have been particularly difficult due to the strong model
dependence and correlations between parameters in the fit. To circumvent these drawbacks, we
introduce two new techniques in EXAFS analysis: the principal component analysis and the residual
phase analysis. Using a test case of a heterogeneous mixture of two organometallic Co compounds,
we demonstrate that these new EXAFS modeling techniques, together with the existing one, the
multiple datasets fit method are the most suitable and adequate methods for phase speciation. In
addition, we discuss the application of these data analysis approaches to biological systems.
© 2002 American Institute of Physic§DOI: 10.1063/1.1473193

INTRODUCTION millisecond-or-better time resolutidfl.This structural infor-
mation can be provided with the precisiona. 0.01 A or
Time-resolved structural methods are having an inbetter. XAS can be applied to the crystalline phase, low-
creased impact on biologicaf and chemicdl™® research. dimensional systems, gaseous and liquid phases with equal
For example, the ability to generate detailed structural datéacility.'! Due to these remarkable structural sensitivity, XAS
in real time can provide invaluable mechanistic insights intois largely applied in a wide range of life science fields, such
protein reactions that may be used to link the static enchs materials, environmental, and biological sciences.
points provided by steady-state structural methods. Mostim-  The experimental and theoretical details of extended
portant and relevant to this work, the use of time-resolved-ray absorption fine structurEXAFS) have been exten-
x-ray absorption spectroscogf RXAS) procedures to fol-  sjvely described in the literatufé The technique has gained
low structural and electronic changes at catalytic metal cenwide popularity recently, due to major breakthroughs both in
ters in metalloenzymes during enzyme turnover has thehe state of the EXAFS theol¥ 4 and the data analysis
promise of providing valuable structural-dynamic informa- methods'®>~1"With the development of theb initio theories
tion in solution® To gain a predictive understanding of the of EXAFS, which take into account multiple scatterings of
mechanism of catalysis involving metal oxides, and their uselectrons, the unique structural knowledgeoordination
as supports of many other catalytic materials, theisitu  numbers, bond distances, and bond angtes be obtained
hydrogen reduction has been recently studied using a conwithin the range of distances up to 7—8 A in the best-case
bination of structural techniquésit has been demonstrated scenario of bulk homogeneous samples or compotfhds.
that the discrimination between the two competing kinetic  Unfortunately, the analytical power of the above tech-
models of the reduction mechanism was made possible byiques is greatly diminished when the system under investi-
using the time-resolved XAS measureméhts. gation is a disordered heterogeneous mixture of species.
X-ray absorption spectroscopy is a unique structuraEach species that contains the absorbing element may have
technique capable of providing bond lengths, coordinatiomyuite different local coordination around that element. This
numbers, and electronic structures around a target atom igreatly complicates the analysis, because the number of the
relevant structural parameters may be comparable to or even

dCorresponding author. Electronic mail: afrenke2@ymail.yu.edu exceed the nun;ber of independent data points '_n th_e expe“'
PCorresponding author. Electronic mail: irit.sagi@weizmann.ac.il mental spectrd’ However, there are many applications in
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which the difference within the series of experimental spec-  To compare the reliability and limitations of the MDS fit,
tra is due to the small number of externally controlled pa-PCA, and RPA, we used all three techniques to study a test
rameters; nevertheless, all the individual spectra can be theoase of a heterogeneous mixture of two organometallic com-
retically described by the same or similar models. The mospounds: Cobalt acetylacetonat&€o-ACAC) and cobalt
recent examples of the XAS studies of the multicomponentetraphenyl-prophin¢Co-TPB.
mixtures are(a) time-resolved measurements, in which the
mixing fractions of species change with tifi@nd (b) the MATERIALS AND METHODS
studies of metal complexes in solutions with differgmi?° Sample preparationCobalt acetylacetonat€o-ACAC)
or different molar concentrations of ligantfs. and cobalt tetraphenyl-prophin€o-TPB in an analytical
In these cases, if all the experimental spectra are anarade were purchased from Sigma. Five mixtures of
lyzed concurrentlyand physically reasonable constraints are[ Co-ACAC], _,[ Co-TPH, were prepared by mixing, with
introduced, the increase in the total number of the data points=0, 0.33, 0.5, 0.67, and 1.0. The mixtures were weighed by
is smaller than the increase in the number of structural paanalytical balance, ground with mortar and pestle, and
rameters. Such an increase of the degrees of freedom in tlseved, to ensure that the particles size is small compared to
fit can be executed in the framework of the multiple datasethe inverse absorption edge jump at the Co K edge. The
(MDS) if implemented, for example, in the FEFFIT program separate mixtures were brushed onto Scotch tape and
of the UWXAFS data analysis packaffeHowever, the mounted in copper sample holders. The accuracy of the mix-
MDS fit method has a typical drawback: By involving addi- ing was~5%.
tional (and sometimes rather subjectiveonstraints among Data collection and analysis<-ray absorption data were
the structural variables, the undesirable model dependence ofeasured using the Agere/UIUC beamline X16C at the Na-
the results is increased. tional Synchrotron Light Source, located at the Brookhaven
In this work, we develop two alternative approaches forNational Laboratory in Upton, New York. X-ray absorption
the EXAFS data analysis of mixtures: principal componentcoefficients in the samples were measured in fluorescence
analysis(PCA) and residual phase analysRPA). With the  mode by using the ion chamber for the incident and the
first approach, we can obtain the number of chemically disStern—Heald detector for fluorescent radiation intensities, re-
tinct species in the heterogeneous samples model indepespectively. For the beam energy calibration, the reference Co
dently, by analyzing the samples’ EXAFS spectra. In somenetal foil was measured simultaneously with the sample in
cases, when the suitable experimental or theoretical starthe transmission mode. The energy was varied from 200 eV
dards are available, the PCA allows us to identify the speciebelow to 1000 eV above the Co K edge. The x-ray absorp-
and obtain the mixing fractions of all the species in thetion coefficients were aligned in the absolute energy and nor-
samples. The second approach, the RPA, is a superior techralized by the absorption edge jumps.
nigue if the identification of the samples is difficult when
using the MDS fit or the PCA. If both the number of the RESULTS
species as well as the identitiessafmeof the species in the The local structural environments in the Co-ACAC and
samples are known in advance, the RPA method allows us t6o-TPP pure compounds are dramatically different. In Co-
identify the remaining species in the samples and obtain theiACAC [Fig. 1(a)], the Cdlll) ion is coordinated by six oxy-
mixing fractions. gen atoms, with average bond distances of 1.88 A, forming a
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TABLE |. Best fit values for the nearest neighbor distanges?) to Co in

a) Co-ACAC and Co-TPP species obtained by the non-linear least square fits
of EXAFS theory(FEFF7 to the dataFig. 3). The notations of Co neigh-
bors in Co-ACAC and in Co-TPP are the same as in Fig. 2. The subscript
next to the neighboring atom symbol indicates the coordination number of

Cl O the neighbor. Uncertainties in the distances obtained from EXAFS are given
in parentheses.
0 p
C2 Co-ACAC Co-TPP
Neighbor Q Clg C2; N, Clg C2,
XRD 1.88 2.78 3.13 1.95 2.99 331

EXAFS 1.891) 2.822) 3.134) 1.961) 2.991) 3.311)

geometry around the Co ion. The extent of mixing is re-
flected in the gradual reduction of thes-#p transition and

in the change of the other edge features. The coordination
numbers and distances of the next neighboring shells were
determined by EXAFS data analysigable I). The results of

the pure compounds by EXAFS fitting are in good agreement
with those reported by x-ray crystallography. These results
outline the feasibility of differentiating between the two
compounds by EXAFS analysis.

Multiple dataset fits The theoretical EXAFS signals
Co-ACAC and Co-TPP were calculated using FEEFThe
atomic coordinates for FEFF7 for the pure compounds were
taken from the available crystallography datas a result of
FEFF7 calculations, the partial Co—O, Co—N, and Co—-C the-
oretical contributiongcorresponding to the most significant,
single-scattering nearest neighbor interactions in Co-ACAC
and Co-TPP, respectivelyvere constructed. We verified the
reliability of the analysis by fitting the FEFF7 theory to the
experimental data for both Co-ACAC and Co-THRure.

FIG. 2. Schematic of the Co-ACAC and Co-TPP structures. Both the fit quality(Fig. 3), and the good agreement of the
best-fit values of the bond lengths between Co and its nearest
neighbors with the crystallography datéable ) show that

distorted octahedron; in Co-TRPig. 1(b)], the Cdll) ionis  our procedure is reliable.

surrounded by four nitrogen atoms at an average bond dis- To fit the mixed system Co-ACAC],_,[Co-TPH,,
tance of 1.95 A in quasiplanar geometry. The differences irEXAFS data forx=0.33, 0.5, and 0.67the theoretical

the coordination number between the two compounds arEXAFS signals for the pure Co-ACAC and Co-TPP phases
reflected in the pre-edge transitions of the raw XAS datavere weighted with the mixing factors-1x andx, respec-
(Fig. 2). Specifically, Co-TPP contains the-4p peak inten- tively, multiplied byk?, and then Fourier transformed into

sity at 7715 eV, which is typical of square planar geomé&try. space, where the nonlinear least squares fits were performed,
This transition is absent in Co-ACAC, due to its octahedralconcurrently, on the three datasets, using the program

1.4 ’
Co-TPP
1.24
~ z 1.0
[+}]
kel e
2 % 0.8
c
2 S
s S  0.64
—
n S04
J Al
0.2+ . Vi
] E Y
0.0 : : . r "Z‘\/\".
0 1 2 3 4 5 6

rA

FIG. 3. Fourier transform magnitudes of tke@weighted EXAFS datésymbol3 and FEFF fit(solid) for pure Co-ACAC and Co-TPP compounds.
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forward. The EXAFS oscillations, normalized and back-
ground subtracted, now play a role in the PCA vectqrs

The dimensiorN is the number of energy points in the spec-
trum. TheM_ principal components necessary to reconstruct
the original data within the experimental noise now corre-
spond toM . distinct species in the original spectralhus, it

is possible to discover how many different species are in the
sample without anya priori knowledge of the identity of
these species. At the subsequent stages of the analysis, the
species are identified by a comparison of the suitable experi-
mental(or theoretical standards with the linear combination

of the obtained components. The mixing fractions of differ-
ent species in all samples are then obtained by a linear least-
square fitting.

In this work, we used theMATHEMATICA ™-based
program?® implementing the PCA method to analyze the
k?x(k) data in thek-range from 2 to 11.5 Al. For five
FIG. 4. Multiple dataset fit results. Shown are the Fourier transform mag—sampIes withk=0, 0.33, 0.5, 0.67, and 1, we obtained the set
nitudes of thek?-weighted EXAFS dat&symbolg and FEFF fit(solid) for of five eigenvalues and eigenvectdmomponents By ex-
the [Co-ACAC] ;_,:[Co-TPH mixture atx=0.33, 0.5, and 0.67. amining the decay of the eigenvalues with the component
number, it is possible to obtain the least number of compo-
nents(species in the samplasing the “scree test.” This is a
graphic method for determining the number of principal
components. The eigenvalues are plotted in the sequence of
variables in the fits were the following. their decrease, and the number of principal components is

(1) The corrections to the model distances for the thre hosen, where the curve levels off to a linear decline. Figure
Co-0, Co-C1, Co-C2 nearest neighbors in the Co-ACA (a) suggests a two-component mixture, because the eigen-

phase and for the three Co—N, Co-C1, Co-C2 nearest neigp{glues level off, beginning with the third component. By a
bors in the Co-TPP phagEig 2’) ' linear?’ fit to the reference-pure compounds, two of them,

(2) The mean square deviatiofEXAFS Debye—Waller Co-ACAC and Co-TPP, provided excellent fit, as expected.
factors This proves that the two pure compounds indeed serve as

(3) Three mixing fractionsxg; good standards for this problem.

; - The reproduction of the data, for all using the two
4) The corrections to the photoelectron energy origin '
@ P dy ong principal components, is shown in Fig(bh. After rotating

FT Magnitude, A®

FEFFIT? (Fig. 4). Thek ranges and ranges in the fits were
from 3 to 12 At and from 1.1 to 3 A, respectively. The

Eo). . .
( 0)(5) The passive electrons amplitude reduction fadtors the matrix of the components onto the matrix of the standard
for Co compounds data, the mixing fractiomsc, were obtained

The total number of variabled7) was, therefore, much (Table 1l). It should be noted that the end values of the frac-

smaller than the total number of relevant independent datté.{Onal coefficients(0 and 3, as obtained by the PCA, are

points in the five EXAFS specti@8). The best fit results for aI_vvays correct_, and thg comparison .ShOU|d be made only
the mixing fractions are reported in Table Il. with the three intermediate concentrations.

Principal component analysis The standard PCA Residual phase analysis (RPAJhe RPA 'approach uti-
%FS one of the known components, in this case the pure

compound, as a “starting phase.” The “starting phase” is
then fractionated and iteratively subtracted from the total
XAS signal to produce corresponding residual spectra. The
individual residual spectra are analyzed to obtain the best fit.

For simplicity, we can examine the case of the two-phase
amixture, where the total experimental EXAFS data can be
e‘\gritten as

X; (i=1,...M) in the N-dimensional space, whefg is the

number of data points in each spectrum &his the number

of spectra. The data matri®, of the dimensionM XN, is

constructed from all the datasets. By finding Mesigenvec-

tors and eigenvalues @, and by arranging the eigenvectors

in the descending order of eigenvalues, one can construct

ordered orthogonal basis. Each original spectrum can be re

resented as a Iine_ar combi_natioanbasic v_ectors, ocom- XE(K) =xx2(K) + (1= %) xr(K), 1)

ponents By selecting the eigenvectors having taegestei-

genvalues and neglecting those with $mallestones, one and where the first term on the right side of the Eh).

can represent all the datasets by using a linear combinatiatlescribes EXAFS from the startinggnown phase, which

of just a few (M) principal componentgeigenvectors Be-  will be subtracted from the total signal. The second term

cause M, <M <N (in most practical casedyl.<N), the denotes the EXAFS, originating from the residual phase

PCA provides a convenient way to reduce the dimension obnly. The weighting coefficienk in Eq. (1) is the actual

the representation. composition of species that is to be determined by this
For the phase speciation purpose, the translation of thmethod. We can assume that, in a heterogeneous mixture, the

standard PCA scheme into the EXAFS language is straightocal environment around the absorbers in each species is
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20 - ‘ obtain the best fit values for these parameters for each value
" a) of the external parametgr at the same time minimizing the

statistical chi squarg?:
154

p N
IN—Z (Xr—XR) (3

Eigenvalue

, whereP is the number of independent parameters in the fit,

51 . N is the number of data points in the fit, asflis the mea-
\ surement uncertainty. By substituting tRg [EQq. (2)] and

. & [Eq. (1)] into Eq. (3), and by assuming thath(k) is a

1 5 3 4 . good model foryr(K), we obtain

Component number N
(x=y)*> P
=Ty e (K& @

o . b) Therefore, the statisticg}? will change quadratically with
24 A » ol Y X—Yy in the vicinity of y=x and will exhibit aminimumat

' the actual value of the mixing fractiox which solves the
problem of the residual phase analysis. Equatirconfirms
the intuitive prediction that the quality of the fit will be the
best at the actual value of because the systematic errors
associated with the subtraction will be minimized wheis
correct.

We used the pure Co-TPP EXAFS data as the known
phasex2(k) [Eqg. (1)] for the subtraction purpose. The re-
sidual phase dat§g(k) [Eqg. (2)], were constructed for ajl
L between 0 and 1, with the increment of 0.1 for the mixtures’

p data withx=0.33, 0.5, and 0.67.
k, A The residual phase theoretical EXAFS sigm&(k) was

FIG. 5. Principal component analysis result. The “scree test” demon- ~ COnstructed with FEFF in accordance with the Co-TPP struc-

strates that using only two principal components with the highest eigenvalture. The fitting variables included the corrections to the

ues must pe §ufficient to reproduce all the détaData reproduction using  Co—N, Co-C1, and Co-C2 distanc€Big. 2(b)] and their

the two principal components. mean square disorders. The correctioB, to the photoelec-
tron energy origin was varied as well. The passive electron
reduction factorSj, was fixed at 0.77 in the fits. This value

unaffected by the presence of other spe¢ibis assumption is the average between t5é20.73 and 0.80 obtained in the

is validated by the well-established transferability of ampli-FEFF7 fits to the experimental EXAFS data of pure

tudes and phases in EXAESUnder this assumption, E¢l) Co-ACAC and Co-TPP compounds, respectively. The total

is exact. number of fitting variables, 7, was smaller than the total

If the appropriate models of the coordination environ-number of the independent data poifits).
ment of the absorber in the residual phase can be con- To run the RPA automatically, a suite of UNIX scripts
structed, we can obtain the approximation fas well, even Was developed to allow for both the rapid change of the
though we know neither the actual valuexafior the identity ~ theoretical model parameters used to calcuigiék) and the
of the residual phase. By introducing an adjustable mixingsequential fits of the experimental data while incremenying
fraction y, we can approximate the experimental EXAFS from 0 to 1. The statistical chi-square values obtained in each
originating from the residual phase and normalized per onét were then analyzed as the functionyofand their minima

Kx(k), A?

absorbing atom by were obtainedFig. 6). Then, the corresponding mixing frac-
tions were defined as the positions of the miniffable II),
XS —yx ’Yk) in accordance with Eg4). It is important to mention that,
T(R(k)— s (2)  despite the statistical chi square being in qualitative agree-
1-y ment with Eq.(4), the minima in Fig. 6 are greater than 0.

The reason is that E¢4) was derived under assumption that
Note thatygr(k) is not expected to be equal to the unknownthe theoretical EXAFS function provides the perfect fit to the
residual phase signatg(k) unlessy X. We can construct experimental data. However, due to both systematic and sta-
the theoretical EXAFS signaj s N(k), corresponding to the tistical errors in the theory and in the experiment, the theory
residual phaseygr(k). Then, by varying the structural pa- always deviates from the experiment, explaining the residual
rameters in the theory, while fitting th(e‘,Q to Yr,22 we can  positive chi-square values at all the minima in Fig. 6.
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FIG. 6. Reduced statistical? obtained for the compositions=0.33, 0.5, and 0.67, using the residual phase analysis.

DISCUSSION the identity of the intermediate states during biocatalysis is

Table Il outlines the results of the quantitative compari-StIII a very complicated tas_k, due to the lack of sufficient
%xperlmental and computational tools

sons of the three analytical approaches appropriate for th
A PP pprop If the number of the species in the sample is unknown,

chemical phase speciation, using EXAFS spectroscopy mea- S o )
surements of the heterogeneous mixtures. Each analyseﬁhe principal component analysis is the ideal method for ob-

method resulted in the determination of the mixing fractton t@iNing this number, model independently. In addition, as dis-
of the phases, Co-ACAC and Co-TPP in the test mixture.‘?ussed in greater deta_ll elsewhere, the PCA allows the detec-
[Co-ACAC], [Co-TPH,. For all three method&he mul- tion _of the changes in thg_ (_1ata that Woul_d_ normally be
tiple dataset fit, principal component analysis, and residua"?ons'd?red below the sensﬂw_ﬂy level of _trad|t|onal EXAFS
phase analysjsthe resultant mixing fractionswere in good ~ analysis method?. We would like to mention that PCA has
agreement with the known concentrations of the Co-TPpecently been recognized as an important tool for phase spe-
species. However, these three methods have their unique &iation using XANES dat’ The important prerequisite for
eas of application. The MDS fit relies heavily on theoreticalthe success of PCA analysis of XANES spectra, however, is
modeling of the EXAFS data irachspecies. It is the most the presence of distinctly different features in the spectra of
powerful tool when the number of variables is much smalleréach individual species. It is very common for most biologi-
than the number of the experimental data points. cally or environmentally important systems, for example, to

If the number of variables approaches the number ofontain XAS-active metaléCu, Mn, Cr, S, etg.in several
data points, it usually means that either the data quality i§Xidation states, each of which generates quite different fin-
poor or the theoretical model relies heavily on the large numgerprint features in their XANES spectra. Therefore, PCA is
ber of adjustable parameters. In both cases, confidence in tigevery powerful tool for chemical phase speciation in these
results is diminished, and it becomes dangerously easy t@ases. If, however, the target elements are present in the
overinterpret the data. Such a limitation, predicted by thesame oxidation states and have similar coordination, or if the
information theony” is usually called the information bottle- XANES regions are relatively featureless, as in the case of
neck of EXAFS data analysis. The fitting procedure becomefeavy elements with significant lifetime broadening effects,
even more ambiguous if the number of species is unknowrthe power of PCA to analyze XANES data is greatly dimin-
In that case, it is virtually impossible to analyze the localished.
structure of the mixed species reliably. A typical example of  In the situations where both the MDS fit of EXAFS data
such a complication is the analysis of catalytic intermediateand the PCA analysis of XANES are not plausible because of
states during biocatalysis by, e.g., metalloenzymes. In moshe above-mentioned reasons, the phase speciation can be
cases, the enzymatic catalysis is rapid and involves a chaimchieved by applying PCA to EXAFS data measured in the
of intimate chemical changes within the catalytic site of themixtures. The only available examptef the successful use
protein. Often, these changes can be related to structuraf PCA to analyze EXAFS data has dealt witbmogeneous
changes that may be directly correlated with the reactiosystems, i.e., where all absorbing atoms are equivalent with
mechanism. However, the determination of the number angespect to their environment throughout the sample. Our goal

has been a different one: to characterize the feasibility of

TABLE Il. Concentration x of the Co-TPP phase in the PCA.as aphase §peC|at|ottgchn|que Whgre there imacro-
[Co-ACAC], _,[Co-TPH, samples obtained using the three different meth- scopic segregation of different species throughout the
ods{1) by fitting the FEFF7 theory to the EXAFS dat®) by using the ~ Sample. We have demonstrated that the PCA provides correct
principal component analysis ait) by the residual phase analysis. mixing fractions of different species in the system, within
10—-15% uncertainty.

Even though PCA provides a model-independent deter-

Compositionx of Co-TPP

As prepared 0.33 0.5 0.67 mination of the number of species in the mixtures, establish-
';J"CDE FIT 063316) 0'602(51? O'g(?g ing their identities and, therefore, the mixing fractions de-
RPA 03 0.6 0.7 pends on the availability of the appropriate experimental or

theoretical standards. The problem becomes complicated if
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there is no preferred theoretical or experimental standard fgphase EXAFS data is subtracted from the experimental data
all the species in the data, e.g., the structure of catalytiat each time step. The residual phase is analyzed with the
intermediate states in enzymatic catalysis. In these cases, Bsver number of the adjustable variables providing the best-
proposed by this work, the phase speciation problem may bfit values of the mixing fractions of the residual phases, as
then solved by the residual phase analysis. The deconvolwvell as their local structural characteristics. In addition, this
tion of the species may be simplified by subtracting the conprocedure has the promise of application in the analysis of
tribution of the starting phase from the total experimentaltime-resolved XAS of biological systems.

data, as described above using the RPA, if there is a high

degree of confidence about the local structure of the starting

phase in the time-resolved measurements and, in addition, K ck NOWLEDGMENTS
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